Полное условие задачи: Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса. Рассмотрим ΔАСМ: ∠САМ = 38° по условию, ∠АСМ = 90° / 2 = 45° так как СМ биссектриса. ∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
Полное условие задачи: Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса. Рассмотрим ΔАСМ: ∠САМ = 38° по условию, ∠АСМ = 90° / 2 = 45° так как СМ биссектриса. ∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
6+44=50 50-17=33 37+19=56
100-89=11 90-65=25 70+19=89
70-63 =7 57+18=75 17+9=26
Объяснение:
6+44=50 50-17=33 37+19=56
100-89=11 90-65=25 70+19=89
70-63 =7 57+18=75 17+9=26