43 и 259 -члены данной арифметической прогрессии;
2033 - не является членом данной арифметической прогрессии
Объяснение:
a₁ = 3; d = 8;
Решаем задачу, используя формулу для n-ого члена арифметической прогрессии.
аₙ = а₁ + d(n - 1)
1) Пусть аₙ = 43, тогда
43 = 3 + 8(n - 1)
40 = 8n - 8
48 = 8n
n = 6
43 - это 6-й член заданной арифметической прогрессии
2) Пусть аₙ = 259, тогда
259 = 3 + 8(n - 1)
256 = 8n - 8
264 = 8n
n = 33
259 - это 33-й член заданной арифметической прогрессии
3) Пусть аₙ = 2033, тогда
2033 = 3 + 8(n - 1)
2030 = 8n - 8
2038 = 8n
n = 254,75
Поскольку n не является целым числом, то 2033 не является членом заданной арифметической прогрессии
∡1 =80°. ∡2 =100°
Объяснение:
Нехай ∡1=x тоді ∡2=20+x
Отже сума суміжних кутів дорівнює 180°
Тому ∡1+∡2=180
x+x+20=180
2x=180-20
2x=160
x=80
x=∡1=80°
∡2=x+20=20+80=100°