1) сумма углов АВН и САВ = 180, по теореме, значит АВН = 180-130 = 50
2) точка Т образует с серединами сторон АВ и ВС отрезки, равные 5, это доказывается тем, что угол А 60, а АТ и АР (Р - середина АВ) равны друг другу, а также = 5. Значит треугольник АРТ - равносторонний. Значит сумма длин отрезков (которую требовалось найти) = 10
3) угол ВОС = 90 - 60 = 30, т.к. АОС = 90, угол СОД = 90 - 30 = 60 по такой же причине, значит угол ВОД = 90, угол АОС тоже 90 (по условию), АО=ОС=ВО=ОД, значит треугольники АОС и ВОД равны(по одному из признаков равенства треугольников (две стороны и угол между ними)), значит АС=ВД
Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение: