Нужно решить1. даны точки m(3; 4; 1) и n (5-2; 3), k - середина отрезка mn. найдите: а) координаты точки к; 6) расстояния от точки к до плоскостей координат; в) расстояние между точками м и n.
В сечении - шестиугольник, две стороны "а" которого F1А1 и ДС являются рёбрами призмы длиной по 5. 4 остальные стороны - следы сечения боковых граней призмы. Они равны √(5²+(11/2)²) = √(25+30,25) = √55,25. Высота шестиугольника равна √(АС²+СС1²) = √((2acos30°)²+11²) = = √((2*5*(√3/2))² + 121) = √(75+121) = √196 = 14. Площадь шестиугольника S равна сумме площадей прямоугольника S1 и двух треугольников, площадь S2 которых можно найти по формуле Герона. S1 = 5*14 = 70. S2 = 2√(p(p-a)(p-b)(p-c), где р - полупериметр, равный (а+в+с)/2 = = (14+2*√55,25)/2 = 7+√55,25 ≈ 14,43303. Тогда S2 = 2*17,5 = 35. ответ: S = 70 + 35 = 105.
Решение, я думаю, довольно простое. Не нужны формулы, просто включаем мозги. Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3) но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов у нас n=15+3=18 тогда диагоналей 135 вроде так
4 остальные стороны - следы сечения боковых граней призмы.
Они равны √(5²+(11/2)²) = √(25+30,25) = √55,25.
Высота шестиугольника равна √(АС²+СС1²) = √((2acos30°)²+11²) =
= √((2*5*(√3/2))² + 121) = √(75+121) = √196 = 14.
Площадь шестиугольника S равна сумме площадей прямоугольника S1 и двух треугольников, площадь S2 которых можно найти по формуле Герона.
S1 = 5*14 = 70.
S2 = 2√(p(p-a)(p-b)(p-c), где р - полупериметр, равный (а+в+с)/2 =
= (14+2*√55,25)/2 = 7+√55,25 ≈ 14,43303.
Тогда S2 = 2*17,5 = 35.
ответ: S = 70 + 35 = 105.