См. Объяснение.
Объяснение:
Дано: KCl0₃ (хлорат калия, или бертолетова соль).
Задача 1.
Вычислите массовые доли химических элементов, входящих в состав хлората калия.
Решение.
1) Относительная молекулярная масса хлората калия:
39 + 35,5 + 3· 16 = 39 +35,5+48 = 122,5.
2) Массовая доля калия - это выраженное в процентах отношение его относительной атомной массы (39) к относительной молекулярной массе хлората калия:
39 : 122,5 · 100 = 31,84 %.
3) Массовая доля хлора - это выраженное в процентах отношение его относительной атомной массы (35,5) к относительной молекулярной массе хлората калия:
35,5 : 122,5 · 100 = 28,98 %.
4) Массовая доля кислорода- это выраженное в процентах отношение относительной атомной массы 3-х атомов кислорода (3·16=48) к относительной молекулярной массе хлората калия:
48 : 122,5 · 100 = 39,18 %.
Проверка:
31,84 + 28,98 + 39,18 = 100,00 %.
Задача 2.
Определите химическую формулу вещества и назовите это вещество, если известно, что в состав данного вещества входят 3 химических элемента, массовые доли которых составляют:
калия - 31,84 %,
хлора - 28,98 %,
кислорода - 39,18 %.
Решение.
1) Пусть в искомой формуле вещества:
а - количество атомов калия,
b - количества атомов хлора,
с - количество атомов кислорода.
2) Тогда относительная молекулярная масса (М) искомого вещества, выраженная через относительную атомную массу калия (39) и его массовую долю (0,3184), равна:
М = (39·а)/0,3184. (1)
Аналогично М можно выразить через хлор и кислород:
М = (35,5·b)/0,2898. (2)
М = (16·c)/0,3918. (3)
3) Приравнивая (1) и (2), находим :
11,3022а =11,3032b,
откуда а = b.
4) Приравнивая (1) и (3), находим:
15,2802а = 5,0944 с,
откуда с = 3а.
5) Таким образом, предполагаемая формула:
KCl0₃.
6) Делаем проверку (см. Задачу 1) и убеждаемся в том, что формула определена верно.
7) Делаем вывод:
формула искомого вещества - KCl0₃;
наименование вещества (согласно "Химической энциклопедии") - хлорат калия, или бертолетова соль.
Номер 1
Дано. DE||АС ;АВ=21;AD=7 см
Доказать. т-к АВС~т-ку DBE
Решение
Треугольники АВС и DBE подобны по первому признаку подобия
<В-общий,<А=<D,как соответственные углы при пересечении параллельных прямых DE и AD и секущей АВ
Так как коэффициент подобия равен отношению сходственных сторон,то
k=AB:DB
DB=AB-AD=21-7=14
k=21:14=3/2
Номер 56
Дано: <PQC=<A;BC=18 cм;СР=6 см;СQ=4 cм
АС-??
ТреугольникиCPQ и CBA подобны по первому признаку подобия
<С-общий;<CQP=<PAB,по условию
Стороны CP и ВС ,CQ и AC сходственные стороны подобных треугольников,поэтому коэффициент подобия равен
k=CP:BC=6:18=1/3
k=CQ:AC
AC=4:1/3=12 см
Номер 3
Дано: <В=<D;AF:CF=3/2;BF=15 cм
DF-??
Треугольники АВF и СDF подобны по первому признаку подобия треугольников
<В=<D поусловию
<АFB=<DFC,как вертикальные
АF и FC- сходственные стороны подобных треугольников поэтому коэффициент подобия равен
k=AF:CF=3/2
BF и DF тоже сходственные стороны,поэтому
ВF:DF=3/2
DF=BF:3/2=10 cм
Номер 4
Дано:трапеция;ВО=3,2 см;OD=6,4 см;
ВС=4,8 см
АD-??
Треугольники АОD и СОВ подобные по первому признаку подобия треугольников
<1=<4,как накрест лежащие
<2=<3,как накрест лежащие
при пересечении параллельных прямых ВС и АD секущими ПС и ВD
ОD и ОВ сходственные стороны подобных треугольников,поэтому
k=OD:OB=6,4:3,2=2
AD и ВС тоже сходственные стороны
АD:BC=2
АD=BC•2=4,8•2=9,6
Объяснение: