Пусть M – середина большей боковой стороны CD прямоугольной трапеции ABCD с основаниями BC < AD , N – середина меньшей боковой стороны AB , а треугольники BCM , AMB и AMD – равнобедренные. По теореме о средней линии трапеции MN || BC , и т.к. AB BC , то MN AB . Медиана MN треугольника AMB является его высотой, значит, этот треугольник равнобедренный, причём < BAM = < ABM . Угол BCD – тупой, значит, это угол при вершине равнобедренного треугольника BCM Обозначим < CBM = < CMB = ? . Тогда
< BCM = 180o - 2?, < ADC = 180o - < BCM = 180o-(180o - 2?)=2?,
< BMN = < MBC = ?, < AMB = 2 < BMN = 2?,
< AMD = 180o - < BMC - < AMB = 180o-3?, < DAM = < AMN = ?.
Предположим, что AD=DM . Тогда < DAM = < AMD , или ? = 180o-3? , т.е. 2? = 90o , что невозможно. Пусть теперь AM=MD . Тогда < DAM = < ADM , или ? = 3? , т.е. ? = 0o , что также невозможно. Если же AD = AM , то
< ADM= < AMD , или 180o-3?= 2? , откуда находим, что ? = 36o . Следовательно, < ADC = 2? = 72o .
ответ: 72o .
Объяснение:
1) Так как искомый центр гомотетии лежит на одной прямой с точками Х и X', то для нахождения центра проведем прямую XX'.
Условия заданий приводятся в учебных целях и в необходимом объеме — как иллюстративный материал. Имя автора и название цитируемого издания указаны на титульном листе данной книги. (Ст. 19 п. 2 Закона РФ об авторском праве и смежных правах от 9 июня 1993 г.)
2) Так как N = 2, то по определению гомотетии ОХ' = 20Х, где О — центр гомотетии, значит, отложим от точки X' отрезок ОХ' = 2ОХ и получим искомую точку О.
см.фото
если что-то непонятно - пиши
Объяснение: