Сначала делим четырехугольник диагональю на два треугольника.
Находим центр тяжести каждого треугольника как точку пересечения его медиан. Центр тяжести четырехугольника лежит на прямой О1О2, соединяющей центры тяжести этих треугольников.
Затем делим четырёхугольник на 2 треугольника при другой диагонали и находим так же центры тяжести других треугольников. Соединяем их отрезком О3О4.
Искомый центр тяжести четырёхугольника лежит в точке ЦТ пересечения отрезков О1О2 и О3О4.
Медиана прямоугольного тр-ка равна половине гипотенузы С=90; AC - вертикальный катет; BC - горизонтальный CO=13 - медиана; AB=26 Тр-ки COB и COA - равнобедренные Из точки O опустим перпендикуляры ON и OM на катеты AC и BC соответственно. ON и OM являются и медианами AC+BC=60-26=34 Пусть AC=x⇒BC=34-x CO^2=CM^2+MO^2 CM=1/2*BC=(34-x)/2 MO=CN=1/2*AC=x/2⇒ (34-x)^2/4+x^2/4=169⇒1156-68x+x^2+x^2=676⇒ 2x^2-68x+480=0⇒x^2-34x+240=0⇒ По теореме Виетта x1+x2=34; x1*x2=240⇒ x1=24; x2=10 34-24=10 34-10=24 Один катет - 10, другой - 24
Сначала делим четырехугольник диагональю на два треугольника.
Находим центр тяжести каждого треугольника как точку пересечения его медиан. Центр тяжести четырехугольника лежит на прямой О1О2, соединяющей центры тяжести этих треугольников.
Затем делим четырёхугольник на 2 треугольника при другой диагонали и находим так же центры тяжести других треугольников. Соединяем их отрезком О3О4.
Искомый центр тяжести четырёхугольника лежит в точке ЦТ пересечения отрезков О1О2 и О3О4.
ABD x y BCD x y
O2 3 2 O3 2 2
ADC x y ABC x y
O1 0,6667 1,3333 O4 3,3333 1,6667
ЦТ = х у
2,533 1,8667