Объяснение:
1. а) BT биссектриса, б) ВД высота, в) ВЕ медиана, г) MN средняя линия
2. ∠AKE=∠CKE ( так как КЕ - биссектриса) KA=KC (по условию задачи) Сторона КЕ - общая. Значит ΔАКЕ=ΔСКЕ по двум равным сторонам и углу между ними (первый признак)
3.∠BAC смежный с ∠1, значит он равен 180°-106°=74°
∠BCA=∠BAC (в равнобедренном треугольнике углы при основании равны)
∠BCA=74°
В равнобедренном треугольнике медиана является высотой, значит ∠BDC=90°
4. У этих треугольников ADC и ABC одна сторона (AC) общая и прилежащие к ней углы равны между собой (по условию задачи), значит треугольники равны. (второй признак).
Стороны DC и BC равны, так как ΔADC=ΔABC
∠МВС = 20°.
∠ВСМ = 70°.
Объяснение:
В треугольнике АВС отрезок ВМ является и высотой (∠ВМА = 90° - дано) и медианой (точка М - середиеа стороны АС - дано). Следовательно, треугольник АВС равнобедренный с основанием АС и отрезок ВМ является биссектрисой (свойство). Тогда
∠МВС = ∠АВС:2 = 40:2 = 20°.
∠ВСМ = ∠ ВАМ = 70° (углы при основании равнобедренного треугольника).
Или так:
∠ВМА=∠ВМС=90° как смежные, равные в сумме 180°.
Прямоугольные треугольники АВМ и СВМ равны по двум катетам: ВМ - общий, а АМ = СМ (так как точка М - середина стороны АС - дано) Из равенства треугольников имеем равенство углов, лежащих против равных сторон:
∠МВС = ∠МВА = ∠АВС:2 = 40:2 = 20°. (∠АВС = ∠МВС + ∠МВА)
∠ВСМ = ∠ ВАМ = 70°.