Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
ВС = 3√21 см.
Объяснение:
Пусть основание перпендикуляра, опущенного на плоскость α - точка Н.
AH=9 см,<ABH=45°,<ACH=60°,<BHC=150°.
Заметим, что Cos150° = Cos(180 - 30) = -Cos30° = - √3/2.
В прямоугольном треугольнике АВН острые углы равны по 45°, треугольник равнобедренный и ВН=АН= 9см.
В прямоугольном треугольнике АСН тангенс угла С равен
Tg60 = √3 = AH/CH => CH = 9/√3 = 3√3 см.
В треугольнике ВНС по теореме косинусов:
BC²=BH²+CH²-2*BН*CH*cos150 = 81+27 - 2*9*3√3*(-√3/2) или
ВС² = 108+81 =189
BC = √189 = 3√21 см.