а) Из условия имеем, что точка пересечения высот лежит на FD. Это может быть только если тр-к DFE - прямоугольный, угол F = 90 гр.
Найдем катет FD:
FD = кор(17^2 - 8^2) = 15
Площадь: S = 8*15/2 = 60
б) Из условия имеем, что DK - и биссектриса и медиана. Значит DEF - равнобедренный. DF = DE = 17, EF = 8
Полупериметр: р = (8+17+17)/2 = 21
Площадь:
S = кор(21*13*4*4) = 4кор273 (примерно 66)
в) Из условия имеем, что биссектриса DK является еще и срединным перпендикуляром. Значит треугольник DEF - равнобедренный. DE= DF=17
Далее решение аналогично п.2.
ответ: 4кор273 = 66 (примерно).
P.S. В 1) и 2) мы воспользовались тем, что прямая и точка, не прин. этой прямой - задают плоскость и притом только одну. Если же говорят о 2 и более плоскостях, значит точка лежит на этой прямой. В 3) мы воспользовались утверждением, что прямая может пересечь плоскость только в одной точке.
вся окружность равна 360 градусам..
вершины треугольника делят ее в отношени 7х:5х:6х
т.е 18х = 360, х = 20
значит дуга АВ = 7*20 = 140
дуга ВС = 5*20 = 100
дуга АС = 6*20 = 120
теперь: угол АВС = 120/2 = 60 (так он опирается на дугу 6х)
угол ВАС = 100/2 = 50 (так он опирается на дугу 5х)
угол АОВ = 140 (получается он цетральный угол, центральный угол равен дуге на которую он опирается!)