С ответом я не но постараюсь объяснить ход мыслей. Боковые стороны равны, угол в 60 * находится у большого основания, так как не тупой. Проводим высоту из вершины В к основанию АС (допустим точка Е) Рассмотрим треугольник АВЕ в нем: 1) Прямой угол Е(по опр. высоты) 2) угол в 60* (по усл. У нас угол А) 3) следовательно угол В = 180-90-60=30* По св-ву угла в 30 * в прямоугольном треугольнике: катет лежащий против угла в 30* равен половине гипотенузе, в данном случае гипотенуза боковая сторона трапеции АВ и равна 8, тогда АЕ - 4 Проведем высоту Н из угла С и получим треугольник СДН, он равен треугольнику АВЕ по двум углам и стороне, следовательно ДН - 4. Рассмотрим ВСНЕ - прямоугольник, по св-ву прямоугольника его противоположные стороны равны. Т.е. ВС = ДН = 7 см У нас получились отрезки АЕ ЕН и НД - при сложении всех отрезков получаем основание АС = 15. ЗАГУГЛИ НЕ ПОМНЮ ФОРМУЛУ СР. ЛИНИИ У нас есть два основания АС=15 и ВС = 7 Расчет средней линии = (АС*ВС):2 у меня получилось 52,5, но это бред, в остальном уверен
Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²