А) нет, т. к. если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересечёт эту плоскость.
б) могут.
Пусть в плоскости ą лежит прямая с||а, b пересекает плоскость ą в точке, принадлежащей прямой с. Тогда, если прямая пересекает одну из двух параллельных прямых, то она пересечёт и вторую.
в) могут. Т. к. а||плоскости альфа, то существует плоскость ß, в которой лежит а. если одна из 2 прямых лежит в некоторой плоскости (в данном случае прямая а), а другая прямая (прямая b) пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
5. Из точки можно построить только один равный вектор, так как они должны быть параллельны, одинаковой длины и направленности
6. Для любых векторов а, b, и с справедливы равенства:
1. a + b = b + a (переместительный закон)
2. (a + b) + c = a + (b + c) (сочетательный закон)