66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
диагональ равна 2√13см
Объяснение:
опускаем высоту на большее основание. получаем два прямоугольных треугольника. Если опустим обе высоты,то прекция меньшего основания на большое равна 5 см. оставшиеся 2 см делятся поровну по 1 см около каждой боковой стороны,поскольку тарпеция равнобедренная и углы при основаниях равны.Высоты равны,боковые стороны равны,а угол проитив боковой стороны 90 по построению. оба треугольника при боковых сторонах конгруэнтны, значит стороны треугольника при боковой стороне и высоте равны √17 , 1 и Н по Пифагору получаем
Н²=(√17)² - 1² =17 - 1 =16, Н=4 Высота 4 см. А от большого основания остается 6 см -катет треугольника ,образованного высотой,диагональю и 6 см от большого основания. Ищем диагональ по Пифагору.
Д²=6²+4²=36+16=52 =4*13
извлекаем корень и получаем диагональ равна 2√13см