Доказательство:
Сумма углов треугольника равна 180°
В прямоугольном треугольнике один угол прямой. Следовательно, сумма острых углов прямоугольного треугольника
180°-90°=90°
Биссектриса любого угла делит его пополам.
При пересечении биссектрис острых углов прямоугольного треугольника образуется треугольник с тупым углом при точке пересечения биссектрис углов, и в этом треугольнике каждый из острых углов вдвое меньше соответствующего острого угла исходного прямоугольного треугольника. Их сумма тоже вдвое меньше 90° и равна 45°.
Отсюда тупой угол этого треугольника равен
180°-45°=135°.
Острый угол при пересечении биссектрис равен 45° и как смежный с этим тупым углом, и как внешний угол при вершине треугольника.
Ясно, что это всегда верно для угла, образующегося при пересечении биссектрис острых углов прямоугольного треугольника, независимо от их величины.
№33на наклонная составляет с плоскостью угол 45 градусов.№32Точка А отстоит от плоскости на расстоянии 26 см. Найдите длину №31Дан куб ABCDA1B1C1D1,1) Выпишите грани, параллельные ребру AA12) выпишите рёбра, скрещивающиеся с ребром ВС3) выпишите рёбра, перпендикулярные плоскости (ABB1) 4) выпишите плоскости, перпендикулярные ребру AD.№30Радиусы оснований усечённого конуса равны Здм и 7дм. Образующая - 5дм. Найдите площадь осевого сечения.№29Шар пересечён плоскостью на расстоянии Зсм от центра. Найдитеплощадь сечения, если радиус шара равен 5см.№28Измерения прямоугольного параллелепипеда равны 8см, 12см, 18см.