Шеңберге сырттай сызылған теңбүйірлі трапецияның орта сызығы 7 см-ге тең болса, онда осы трапецияның периметрі нешеге тең болады. (Трапецияның орта сызығы дегеніміз табандарының қосындысының жартысына тең) Көмектесіңдерші өтініш
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
Минут 5 ломал голову, с чего вообще начать) Потом вспомнил про подобие треугольников.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.