См. рисунок. решать задачу можно разными например, вот этими двумя. 1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45 2)рассмотрим треугольники АСМ и МСВ АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC) т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе. задача решена
См. рисунок. решать задачу можно разными например, вот этими двумя. 1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45 2)рассмотрим треугольники АСМ и МСВ АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC) т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе. задача решена
Дано:
∆АВС - прямоугольный.
∠А = 60°
АВ - АС = 15 см.
∠С = 90°
Найти:
АВ.
СУММА УГЛОВ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА РАВНЯЕТСЯ 90°
=> ∠В = 90 - 60 = 30°
ЕСЛИ УГОЛ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА РАВНЯЕТСЯ 30°, ТО НАПРОТИВ ЛЕЖАЩИЙ КАТЕТ РАВЕН ПОЛОВИНЕ ГИПОТЕНУЗЫ.
=> АС = 1/2АВ
Пусть х см - АС, тогда 2х см - АВ.
Их разность равна 15
1.Составление математической модели.
2х - х = 15
2.Работа с математической моделью.
х = 15
15 см. - АС
АВ = 15 × 2 = 30 см.
3.ответ: 30 см.