1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
360°:9=20° в одной части.
Значит дуга АМС имеет градусную меру 40°
Угол АОС - центральный угол, измеряется дугой на которую он опирается.
∠АОС=40° ⇒∠АВС=140° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС
Треугольник АВС равнобедренный с углом 140° при вершине, значит углы при основании (180°-140°):2=20°
О т в е т. 20°; 140°; 20°
2) 4+5=9
360°:9=20° в одной части.
Значит дуга АМС имеет градусную меру 80°
Угол АОС - центральный угол, измеряется дугой на которую он опирается.
∠АОС=80° ⇒∠АВС=100° ( сумма углов четырехугольника равна 360° и углы ВАО и ВСО - прямые)
Отрезки касательных, проведенных к окружности из одной точки равны, АВ=ВС
Треугольник АВС равнобедренный с углом 100° при вершине, значит углы при основании (180°-100°):2=40°
О т в е т. 40°; 100°; 40°