64 см
Объяснение:
Нам известно что угол В равен 60°. В таком случае угол А будет равен 30°. Катет против 30 равен половине гипотенузы. Что бы найти этот катет мы будем работать в малом прямоугольном ореугольнике СВD. Угол В остаётся равен 60°,значит угол ВСD будет равен 30°. В нем известная нам сторона DB будет катетом против 30. А сторона ВС будет гипотенузой. Находим ее,умножив 16 на 2.
Возвращаемся к большому треугольнику. Теперь нам известно,чему равен катет против 30°. Так как он равен 32 см,при умножении на 2 мы получаем целую сторону АВ,равную 64 см
ответ: 36см²
Объяснение: если треугольник равнобедренный, то высота, проведённая к гипотенузе также является и медианой и биссектрисой, поэтому она разделяет гипотенузу пополам и угол из которого проведена делит тоже пополам, поэтому два угла будут по 45°. Также высота делит этот треугольник на 2 других равнобедренных треугольника, поэтому высота и отрезки, на которые она делит гипотенузу равны. Из этого следует, что высота и разделённые отрезки = 6. Поэтому гипотенуза = 6×2=12см. Теперь найдём площадь треугольника:
S=6×12÷2=36см².
Можно найти проще, не находя гипотенузу. Так как по формуле площадь треугольника равна полупроизведению его основания на высоту, а так как мы половину основания нашли сразу, можно умножить 6×6=36см²
Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора ВК=√(9²-3²)=√18=3√2(см).
ВК-высота трапеции, значит r=(3√2)/2 см.
S(круга)= π ( (3√2)/2 )²=4,5π (см²)