Считаем, что в условии задачи допущена неточность и концы основания треугольника делят ОКРУЖНОСТЬ на ДУГИ в отношении 1:8. Тогда дуга АВ2С равна 360°:9=40°, а дуга АВС=320°. Поскольку вершина В нашего равнобедренного треугольника никак не привязана к окружности по условию, имеем 4 варианта ответов, когда вершина В фиксирована относительно окружности. Остальные варианты, когда вершина В находится в ЛЮБОМ месте прямой "а", перпендикулярной к хорде АС в ее середине, точного решения не имеют. 1) Вершина В - на окружности и вписанный угол АВС равен половине дуги АВ2С, на которую он опирается.
Самое простое доказательство этой теоремы через радиус описанной окружности.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.