ДАЙ ЛУЧШИЙ ОТВЕТ
Диагональ правильной четырёхугольной призмы равна а и образует с
плоскостью боковой грани угол 30°. Найти:
а) сторону основания
призмы.
б) угол между диагональю призмы и плоскостью основания
в) площадь боковой поверхности призмы.
г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию.
Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию.
а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2
б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания.
ВD как диагональ квадрата равна а√2):2
cos D1BD=BD:BD1=( а√2):2):a=(√2):2),
и это косинус 45 градусов.
в) площадь боковой поверхности призмы находят произведением высоты на периметр основания:
S бок=DD1*AB= (а√2):2)*4*a/2=a²√2
г) Сечение призмы, площадь которого надо найти, это треугольник АСК.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение.
Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания.
S Δ(АСК)=КН*СА:2
SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
Обозначим эти пропорции как 1х, 2х, 5х. Зная, что сумма углов треугольника составляет 180°, составляем уравнение:
х+2х+5х=180
8х=180
х=180÷8
х=22,5°. Первый угол=22,5° Теперь найдём остальные углы:
22,5×2=45° - это второй угол
22,5×5=112,5°- это третий угол
Задача 4:
Пусть угол при основании будет "х", тогда угол вершины будет = х+60. Зная, что сумма всех углов треугольника равна 180°, составляем уравнение:
х+х+(х+60)=180
2х+х+60=180
3х+60=180
3х=180-60
3х=120
х=120÷3
х=40; каждый угол при основании =40°; угол вершины=40+60=100°
Задача с треугольником 1:
В прямоугольном треугольнике угол А= 180-90-30=60°, угол А=60°
Так как катет АВ лежит напротив угла С, который =30°, то АВ= половине гипотенузы, значит гипотенуза АС в 2 раза больше АВ, из этого следует что АС= 11×2=22(см). Итак: АС=22см; угол А=60°
Задача с треугольником 2
Рассмотрим ∆ЕСК. Если медиана КР является ещё и высотой, значит этот треугольник равнобедренный и КР будет также и биссектрисой, которая разделит угол К пополам, и каждый угол будет по 45°. Если он равнобедренный, то КС=КЕ=14см. Найдём по теореме Пифагора гипотенузу ЕС:
14²+14²=196+196=√196×√2=14√2. ЕС=14√2см
Так как медиана КР делит сторону пополам, и являясь биссектрисой, делит угол, то ∆КЕР=∆КСР; стороны ЕР=РС=КР = 14√2÷2=7√2; КР=7√2(см)
я не украинец