Дано:
АВ = 27 м - высота башни (А - вершина башни, В - основание башни)
∠АКВ = 60°
Найти:
а) расстояние КВ от точки К до основания башни В
б) расстояние КА от точки К до вершины башни А
Треугольник АВК - прямоугольный с гипотенузой КА и катетом КВ, прилегающим к углу АКВ = 60° и известным катетом АВ=27 м, противолежащим углу АКВ.
а) Катет КВ = АВ · ctg ∠АКВ = 27 · ctg 60° = 27 · 1/√3 ≈ 15,6 (м)
б) Гипотенуза КА = АВ : sin ∠АКВ = 27 : sin 60° = 27 : 0.5√3 ≈ 31,2 (м)
а) Расстояние от точки К до основания башни В: КВ ≈ 15,6 м
б) Расстояние от точки К до вершины башни А: КА ≈ 31,2 м
5) даны накрестлежащие углы, при параллельных прямых они равны
эти прямые параллельны при условии ∠а=90*, тогда:
180-а=180-90=90*
90=90
При других значениях а равенство не соблюдается, утверждать , что нам дана именно эта градусная мера мы не можем.
6)
∠DKC и ∠АКВ вертикальные - они равны, DK и КВ равны, СК и АК тоже равны, тогда треугольники DKC и АКВ равны по двум сторонам и углу между ними. В равных треугольниках соответствующие элементы также равны - ∠А=∠С ,∠D=∠B .
рассмотрим прямые a,b при секущей BD
∠ВDС=∠DBA - накрестлежащие , они при параллельных прямых равны, мы это доказали .
7) Дан р/б треугольник, в нем углы при основании (МЕ) равны ∠М=∠Е.
Данные нам углы назовем ∠М- внутри треугольника и ∠М1 .
Рассмотрим прямые a,b при секущей МЕ
∠Е=∠М1- накрестлежащие , они при параллельных прямых равны, мы это доказали .
8) Дан р/б треугольник АВС , значит ∠А=∠С=80*
∠КАС =80-40=40*
Рассмотрим треугольник КАР- он р/б
∠КАР=∠КРА=40*
Рассмотрим прямые a,b при секущей АР
∠РАС=∠КРА - накрестлежащие , они при параллельных прямых равны.