Пересечение двух прямых образует вертикальные углы. По свойству вертикальных углы равны между собой. Значит 2 противоположных угла буду равны между собой и равны 21°.
Сумма 4-х вертикальных углов, образованных пересечением 2-х прямых равна 360°.
Пэтому сумма 2-х других углов равна:
(360° - 2 * 21) / 2 = 159°.
или
Допустим, пересеклись прямые AB и CD в точке O (это писать не нужно, просто обозначить на рисунке)
Дано: ∠AOD = 21°.
Найти: ∠AOC, ∠COB, ∠DOB.
∠COB = ∠AOD = 21° как вертикальные.
∠AOC = 180° - ∠AOD = 180° - 21° = 159° как смежные.
∠DOB = ∠AOC = 159° как вертикальные.
ответ: ∠AOC = ∠DOB = 159°, ∠COB = 21°.
есть неравенство вида x^2-0,1x<0,
исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - >
x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)