а) Точка пересечения прямых находится совместным решением уравнений прямых: y=3x-1 и x-3y+1=0Выразим их в виде системы: 3х - у = 1 3х - у = 1 х - 3у = -1 -3х + 9у = 3 8у = 4 у = 4/8 = 0,5 х = -1 + у = -1 + 3*0,5 = -1 + 1,5 = 0,5 Точка пересечения (0,5; 0,5).
б) Угол между прямыми : две неперпендикулярные прямые A1, A2 (взятые в данном порядке) представляются уравнениями y=a1x+b1, y=a2x+b2. Тогда формула для определения угла между ними: . У первой прямой коэффициент а1 = 3 Для второго надо уравнение выразить относительно у: . а2 = 1/3. Тангенс угла равен: . Данному тангенсу соответствует угол -53.1301 градуса. Знак минус означает, что вторая линия имеет меньший угол наклона к оси х. В этом можно убедиться по коэффициентам а в уравнении прямой у = ах + в. Коэффициент а равен тангенсу угла наклона прямой к оси х. а1 = 3. α1 = arc tg 3 = 71.56505 градус. a2 = 1/3 α2 = arc tg(1/3) = 18.43495 градус. Если отнять 18.43495 - 71.56505 = -53.1301 градус.
Давай, равнобокая трапеция это равнобедренная трапеция, боковые стороны равны 1)обозначим ее АВСД АД -нижнее основание ВС- верхнее опустим высоту из вершины В на нижнее основание , получаем прямоугольный треугольник АНВ у которого угол А = 60 ( по условию) , значит другой угол этого треугольника = 30 градусов ( сумма острых углов в прямоугольном треугольнике = 90 градусов) 2) по условию боковая сторона = 4 = АВ , есть правило что катет лежащий против угла в 30 градусов равен половине гипотенузы , следовательно, АН= 1/2 АВ то есть = 2 3)опустим высоту из вершины С , назовем СР, треугольники АНВ= СРД ( по 1 признаку) , значит стороны АН=РД=2 4) вся сторона АД= 12, а ВС= НР значит отнимаем от АД-АН-РД= 8 ответ :8
y=3x-1 и x-3y+1=0Выразим их в виде системы:
3х - у = 1 3х - у = 1
х - 3у = -1 -3х + 9у = 3
8у = 4
у = 4/8 = 0,5
х = -1 + у = -1 + 3*0,5 = -1 + 1,5 = 0,5
Точка пересечения (0,5; 0,5).
б) Угол между прямыми :
две неперпендикулярные прямые A1, A2 (взятые в данном порядке) представляются уравнениями
y=a1x+b1,
y=a2x+b2.
Тогда формула для определения угла между ними:
У первой прямой коэффициент а1 = 3
Для второго надо уравнение выразить относительно у:
а2 = 1/3.
Тангенс угла равен:
Данному тангенсу соответствует угол -53.1301 градуса.
Знак минус означает, что вторая линия имеет меньший угол наклона к оси х.
В этом можно убедиться по коэффициентам а в уравнении прямой у = ах + в.
Коэффициент а равен тангенсу угла наклона прямой к оси х.
а1 = 3. α1 = arc tg 3 = 71.56505 градус.
a2 = 1/3 α2 = arc tg(1/3) = 18.43495 градус.
Если отнять 18.43495 - 71.56505 = -53.1301 градус.