1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги: ответ: см. 2. Найдем сторону квадрата a: Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата. Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой: Найдем площадь правильного треугольника: . ответ: см.
Можно задать встречный вопрос: какая единица измерения была первой? может быть радиан придумали раньше... угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу (вне зависимости от длины радиуса... это всегда один и тот же угол)) мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14... аналогичный вопрос: почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)
Найдем радиус окружности:
Найдем длину дуги:
ответ:
2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен:
Площадь вписанного треугольника равна:
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника:
ответ: