Нахождение площади труегольника: 1. Формула площади треугольника по стороне и высоте S = 1a · h2 2.Нахождение площади трекгольника по всем сторонам(Формула Герона) √S = √p(p - a)(p - b)(p - c)(все под корнем идет) 3.Формла площади трекгольника по 2-ум сторонам и углу между ними S = 1a · b · sin γ2 4.Формула нахождения площади трегольника по трем сторонам и радиусу описанной окружности S = a · b · с/4R 5.Формула площади трекгольника по трем сторонам и радиусу вписанной окружности S = p·r Нахождение площади прямоугольника: 1.Нахождение площади прямоугольника(одну сторону умножаем на другую,то есть ту которая длинная и которая короткая друг на друга) S = a · b Нахождение площади паралелограма: 1.Формула площади параллелограмма по длине стороны и высоте S = a · h 2.Формула площади параллелограмма по двум сторонам и углу между ними S = a · b · sin α
Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания. Все грани правильной пирамиды - равнобедренные треугольники. Поэтому если плоский угол ври вершине равен 60°, то эти треугольники - равносторонние. Следовательно, стороны основания равны боковому ребру. Поэтому в пирамиде МАВС АВ=ВС=АС= МА=4 см. Объём пирамиды равен одной трети произведения её высоты на площадь основания. Для правильного треугольника S(АВС=(a²√3):4 S=16√3/4=4√3 Центр ∆ АВС лежит в точке пересечения медиан (высот, биссектрис) правильного треугольника. По свойству медиан АО=2/3•АН=АВ•sin60°•2/3 AO=(4•√3/2)•2/3=4/√3 Из прямоугольного ∆ АМО по т.Пифагора МО=√(АМ²-АО²)=(4√2)/√3 V= см³≈7,54 см³ ------- Правильная треугольная пирамида с плоским углом при вершине 60° - правильный тетраэдр. Формула его объёма где а - длина его ребра. см³
9,6 дм
Объяснение:
угол В= 180°- угол С - угол А=180°-90°-45°=45°
угол В= углу А → ∆АВС - равнобедренный
АС=ВС=9,6 дм