1) Боковое ребро образует с плоскостью основания угол 45 градусов следовательно угол АВС(обозначимего так, угол которойнаверху) тоже равен 45 градусов. Следовательно, ВЫСОТА пирамиды=Радиус описанной окружности.
2)Обозначим ВЫСОТУ=РАДИУС ОПИС.ОКР. через х. По т.Пифагора найдем х:
ВЫСОТА=РАДИУС.ОПИС.Окр.=
3) Радиус описанной окружности = диагональ квадрата разделить на 2 (В основании квадрат т.к. пирамида 4-х угольная и правильная)
Отсюда, диагональ квадрата =
4)Сторона квадрата=диагональ кв. делить на корень из 2= 4см
5)Площадь основания = сторона в квадрате=16 см^2
6)бок.поверхн-ть = 1/2 * Периметр основания * высота =
7)Площадь полной поверхности=16+16 кореньиз 2
В прямоугольную трапецию с периметром 242 см вписан круг, радиус которого = 30см. Найдите отрезки большей боковой стороны трапеции на которые ее делит точка касания круга. если разница этих отрезков равна 11см
Объяснение:
Большая боковая сторона это СД
Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны⇒АВ+СД=ВС+АД=242:2=121 (см).
Радиус, проведенный в точку касания перпендикулярен касательной ⇒ R=НК=АВ=30*2=60(см).
Значит АВ+СД=121 , 60+СД=121 , СД=61 см.
Пусть меньший отрезок стороны СД будет х см, тогда больший отрезок стороны СД= будет х+11, а из сумма 61 см. Составим уравнение : х+х+11=61 , х=25см
Меньший отрезок 25 см, больший отрезок 25+11=36 (см)