Осевым сечением цилиндра называется сечение плоскостью проходящей через ось цилиндра. Осевое сечение цилиндра - прямоугольник, две стороны которого - образующие цилиндра, а две другие стороны - диаметры оснований цилиндра. Пусть образующая цилиндра равна х, тогда диаметр равен 3х. Площадь осевого сечения равна х*3х, и равна 108 кв. см. х*3х=108 3х^2=108 x^2=108/3 x^2=36 x=√36 x(1)=-6 x(2)=6 Так как образующая не может быть меньше 0, то она равна 6 см. Диаметр основания равен 6*3=18 см. Радиус основания равен 18/2=9 см Высота цилиндра равна образующей h=6 формула полной площади цилиндра: S= 2 π rh+ 2 π r2= 2 π r(h+ r) S=2*3.14+9*(6+9)= 847,8 кв.см.
Из ΔAMB по теореме косинусов : AB² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMB (1) ; Из ΔAMC : AC² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMC ; но cos∠AMC =cos(180° -∠AMB) = - cos∠AMB поэтому AC² =AM² +(BC/2)² +2AM*(BC/2)cos∠AMB (2) ; суммируем (1) и (2) получаем AB² +AC² =2AM² + BC²/2 ⇔4AM² =2AB² +2AC² -BC² ; но BC² =AB² +AC²- 2AB *AC*cosA поэтому : 4AM² =AB² +AC² + 2AB *AC*cosA.
* * * Можно продолжать медиана MD =AM и M соединить с вершинами B и C. Получится параллелограмм ABDC , где верно 2(AB²+AC²) = AD² +BC² ⇔2(AB²+AC²) = 4AM² +BC².
Для медианы CN : 4CN² =CB² +CA² +2CB*CA*cosC. Если ΔABC равнобедренный CB =AB ⇒∠C =∠A , то 4CN² =4AM² или CN =AM .
ответ:Держи
Объяснение: