К сожалению не проходят вложения. Попробую на словах.
а) Из т.К проведем отрезок КР // АС. Тр. ВКР подобен тр. АВС
ВК = АВ/4 (по условию). Значит КР = АС/4 = 15/4, ВР = ВС/4 = 7/4, но ВL = 4,
LC = 3. Тогда РL = 4 - 7/4 = 9/4.
Переходим к другой паре подобных тр-ов: KPL и LMC.
KP/CM = LP/LC 15/(4CM) = 9/(4*3) Отсюда: СМ = 5. Для нахождения последней стороны LM тр. LMC найдем cos LCM = - cosACB =
= - (BC^2 + AC^2 - AB^2)/(2BC*AC) = - (225+49-260)/210 = 14/210 = - 1/15.
Теперь по теореме косинусов найдем LM:
LM =кор(LC^2 + CM^2 - 2*LC*CM*cosLCM) = кор(9 + 25 + 2*3*5*/15) = 6.
Итак в тр-ке LMC известны все стороны:
MC = 5, LC = 3, LM = 6. Полупериметр: p = 7. Площадь по ф. Герона:
S = кор[7*(7-3)(7-5)(7-1)] = кор56. С другой стороны, S = pr, где r - радиус вписанной окр-ти . r = (кор56)/7 = (2кор14)/7
ответ: r = (2кор14)/7.
б) Найдем координаты точки О - центра вписанной окр-ти, поместив начало системы координат в т.А и направив ось Х по AC.
т.О - точка пересечения биссектрис тр. LMC. Проведем ОN перпендик. СМ
ОN = r = (2кор14)/7.
Тр-к СОN: СN = ON/tg(LCM/2) tg(LCM/2)= sinLCM /(1+cosLCM) =
= (2кор14)/7.
Тогда CN = 1.
Итак точка О ( и весь вектор АО) имеет координаты (16; (2кор14)/7)
Длина вектора АО = кор[ 256 + 56/49] = (30кор14)/7
ответ: АО = (30кор14) / 7.
∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.
Объяснение:
1) По теореме косинусов:
a^2 = b^2 + c^2 + 2bc*cos (α),
откуда
cos (α) = (b^2 + c^2 - a^2) / 2bc .
2) Обозначим углы и стороны:
∠ А = α
∠ В = β
∠ С = Δ
а = ВС (лежит против угла α)
b = АС (лежит против угла β)
с = АВ (лежит против угла Δ).
3) cos (α) = (b^2 + c^2 - a^2) / 2bc = (6^2 + 3^2 - 4^2) / (2*6*3) =
(36+9-16)/36 = 29/36 = 0,8055 55
По таблице косинусов находим, какой это угол:
α = arccos 0,8055 55 = 36,34°.
∠А = 36,34°.
4) Находим второй острый угол (он лежит против стороны 3 см и должен получиться меньше угла α):
cos (Δ) = (b^2 + а^2 - с^2) / 2ab = (6^2 + 4^2 - 3^2) / (2*6*4) =
(36+16-9)/48 = 43/48 = 0,8958 33
По таблице косинусов находим, какой это угол:
α = arccos 0,8958 33 = 26,38°.
∠С = 26,38°.
5) Находим третий угол:
180 - 36,34 - 26,38 = 117,28°.
∠В = 117,28°.
ответ: ∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.