Диагонали равнобедренной трапеции abcd с боковой стороной ab пересекаются в точке p. докажите , что центр описанной около неё окружности лежит на окружности , описанной около треугольника apb.
угол АРВ равен центральному углу дуги АВ (соостветствующей хорде АВ) в окружности, описанной вокруг трапеции. Можно сослаться на теорему о угле между секущими, а можно и сделать вид, что её не занешь, и по ходу её джоказаьб - для этого надо через D провести прямую II АС, и угол между ней и DB будет измерять двумя дугами АВ (дуга СD такая же).
На самом деле уже доказано, что окружность, описанная вокруг АВР пройдет через О (центр описанной окружности), поскольку из О и Р отрезок АВ виден под одинаковым углом. Но мы опять сделаем вид ,что этого не понимаем, и продолжим доказывать :)))
Если мы проведем перпендикуляр через середину АВ, то он пройдет через О. И лучи ОА и ОВ будут составлять между собой угол, равный АРВ. Если же мы проведем окружность через А В и Р, то она это препендикуляр пересечет в какой-то точке, из которой АВ будет виден под таким же углом. В силу 5 постулата ЕВКЛИДА (не больше, не меньше :))) такая точка может быть только одна все !:))) Если бы через заданную точку можно было бы провести ДВЕ прямые под одинаковым углом, все геометрия бы пошла насмарку :)))
В равнобедренном треугольнике угол с градусной мерой в 120 градусов будет являться лежащим напротив основания данного треугольника, а оставшиеся два, равных друг другу угла (т.к. они лежат у основания этого треугольника), будут равны (180-120):2=30 градусов. Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника. Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы. Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно. Таким образом, отрезок равен 3-ём см. ответ: 3 см.
Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
угол АРВ равен центральному углу дуги АВ (соостветствующей хорде АВ) в окружности, описанной вокруг трапеции. Можно сослаться на теорему о угле между секущими, а можно и сделать вид, что её не занешь, и по ходу её джоказаьб - для этого надо через D провести прямую II АС, и угол между ней и DB будет измерять двумя дугами АВ (дуга СD такая же).
На самом деле уже доказано, что окружность, описанная вокруг АВР пройдет через О (центр описанной окружности), поскольку из О и Р отрезок АВ виден под одинаковым углом. Но мы опять сделаем вид ,что этого не понимаем, и продолжим доказывать :)))
Если мы проведем перпендикуляр через середину АВ, то он пройдет через О. И лучи ОА и ОВ будут составлять между собой угол, равный АРВ. Если же мы проведем окружность через А В и Р, то она это препендикуляр пересечет в какой-то точке, из которой АВ будет виден под таким же углом. В силу 5 постулата ЕВКЛИДА (не больше, не меньше :))) такая точка может быть только одна все !:))) Если бы через заданную точку можно было бы провести ДВЕ прямые под одинаковым углом, все геометрия бы пошла насмарку :)))