1. Центральные углы АОЕ и ВОЕ, опирающиеся на дуги АЕ и ВЕ, соответственно, равны их градусным мерам. Рассмотрим треуг-ик АОВ. Он равнобедренный, т.к. АО и ВО - радиусы окружности. Отрезок ОЕ перпендикулярен КМ, т.к. КМ - касательная (касательная к окружности перпендикулярна к радиусу, проведенному в точке касания Е). Значит, ОЕ перпендикулярен и хорде АВ (если прямая перпендикулярна к одной из двух параллельных прямых КМ, то она перпендикулярна и к другой АВ. Прямые АВ и КМ параллельны по условию). Тогда ОЕ - высота равнобедренного треуг-ка АОВ. Пользуемся свойством равнобедренного треуг-ка о том, что высота его, проведенная к основанию, является медианой и биссектрисой. Значит <AOE=<BOE Следовательно, дуги АЕ и ВЕ, на которые опираются эти углы, также равны между собой: АЕ=ВЕ
2. Пользуемся свойством биссектрисы угла: каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Строим биссектрису угла ВАС, на ее пересечении с катетом ВС ставим точку Е. Помним о том, что расстояние от точки Е до прямой - длина перпендикуляра от этой точки до прямой. Перпендикуляр СЕ уже есть (угол С прямой по условию), строим перпендикуляр ЕС1. ЕС=ЕС1
Я формулировку теоремы не стала удалять (повторить всегда полезно)) но она и не пригодилась... 1/ отрезки касательных, проведенных из одной точки (К) равны... DK=KC 2/ центр вписанной в угол окружности лежит на биссектрисе этого угла)) ОК - биссектриса ∠DKC ∠DKO = ∠CKO ∠DOK = ∠COK 3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу ∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC т.е. DA || KO О --середина АС ---> KO --средняя линия, К --середина ВС DK = KC = (1/2)BC = 6
Рассмотрим треуг-ик АОВ. Он равнобедренный, т.к. АО и ВО - радиусы окружности. Отрезок ОЕ перпендикулярен КМ, т.к. КМ - касательная (касательная к окружности перпендикулярна к радиусу, проведенному в точке касания Е). Значит, ОЕ перпендикулярен и хорде АВ (если прямая перпендикулярна к одной из двух параллельных прямых КМ, то она перпендикулярна и к другой АВ. Прямые АВ и КМ параллельны по условию). Тогда ОЕ - высота равнобедренного треуг-ка АОВ. Пользуемся свойством равнобедренного треуг-ка о том, что высота его, проведенная к основанию, является медианой и биссектрисой. Значит
<AOE=<BOE
Следовательно, дуги АЕ и ВЕ, на которые опираются эти углы, также равны между собой: АЕ=ВЕ
2. Пользуемся свойством биссектрисы угла: каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Строим биссектрису угла ВАС, на ее пересечении с катетом ВС ставим точку Е. Помним о том, что расстояние от точки Е до прямой - длина перпендикуляра от этой точки до прямой. Перпендикуляр СЕ уже есть (угол С прямой по условию), строим перпендикуляр ЕС1. ЕС=ЕС1