Угол ВАС = 30 градусов
Угол ВСА = 30 градусов
Угол АВС = 120 градусов
Объяснение:
Высота делит треугольник на два равных прямоугольных треугольника BDC и BDA, если меньший катет лежит против угла в 30 градусов значит этот катет равен половине гипотенузы, в треугольнике BDC, ВС - гипотенуза
ВС=25,6 по условию, BD - меньший катет BD= 12,8 по условию, как мы видим меньший катет равен половине гипотенузы, значит угол С=30 градусов, теперь надо найти угол DBC, сумма углов любого треугольника составляет 180 градусов, в нашем треугольнике угол D=90 градусов(так как прямой), угол С = 30 градусов(мы нашли выше), значит угол DBC=180-90-30=60 градусов
Угол С=30 градусов
Угол А=30 градусов (так как треугольник равнобедренный, значит и углы прилежащие к основанию равны)
Угол В=60+60=120 градусов
20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.