1) в ΔАСН:
СН=0,5 (катет, лежащий против угла в 30° равен половине гипотенузы)
По теореме Пифагора:
АН² = АС² - СН² = 1 - 0,25 = 0,75
АН = √0,75 = 0,5 √3
в ΔАВС:
cos A = AC / AB
AB = 1 ÷ (√3 / 2) = 2√3 / 3
BH = AB - AH = 2√3 / 3 - 0,5√3 = (4√3 - 3√3) / 6 = √3 / 6
ответ: √3 / 6
2) АВ = 2 ВС = 2 (катет, лежащий против угла в 30° равен половине гипотенузы)
∠В = 180° - ∠С - ∠А = 60°
cos B = BH / BC
BH = 1/2 × 1 = 1/2
AH = AB - BH = 2 - 1/2 = 1 1/2 = 1,5
ответ: 1,5
3) sin A = CH / AC
CH = sin A × AC = 3/5 × 4 = 12/5 = 2,4
ответ: 2,4
Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
Итак ,мы имеем ПРЯМОУГОЛЬНЫЙ треугольник АВС, угол АСВ = 90 градусов.
Из равенства дуг СВ и ВР (мы уже ДОКАЗАЛИ, что АВ - диаметр, пепендикулярный СР) следует, что угол СЕР в 2 раза больше ВСК,
то есть если считать угол ВСК = 5*х, то
угол ЕСР = 8*х, угол СЕР = 10*х.
Но угол ЕСР + угол СЕР = 90 градусов, откуда х = 5 градусов, угол САВ = угол КСВ = 5*х = 25 градусов, угол КВС = 90 - 25 = 65 градусов.
ответ углы треугольника 25, 65 и 90 градусов.
Дано:
∆АВС.
∠А = 45°
BD - высота, медиана.
АС = 5 см.
Найти:
Расстояние от В до АС.
Решение.
∆ABD и ∆CBD - прямоугольные.(так как BD - высота)
Рассмотрим эти треугольники.
AD = DC, по условию
BD - общая сторона.
=> ∆ABD = ∆CBD, по катетам.
=> ∆АВС - равнобедренный.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ABD = ∠CBD = 90 - 45 = 45°(если треугольник равнобедренный то высота, проведённая из основания к вершине треугольника, является ещё и биссектрисой)
=> ∠АВС - прямой (90°)
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
=> ВD = 5 ÷ 2 = 2,5 см.
ответ: 2,5 см.