1) В прямоугольнике диагонали равны и делятся точкой пересечения пополам.
Найдем диагонали по Пифагору: АС=√(AD²+DC²) или
АС=√(64+36)=10см.
Половины диагоналей - это проекции боковых ребер пирамиды. Если проекции равны, то равны и сами наклонные (ребра). Значит SA=SB=SC=SD.
Из прямоугольного треугольника SOA по Пифагору найдем SA.
SA=√(AO²+SO²) или SA=√(25+144)=13см.
ответ: боковые ребра равны между собой и равны 13см.
2)Площадь боковой поверхности конуса находится по формуле
S = πrl
Объяснение:
Дано: r =4 см;
l = 5 см.
S = π·4·5 =20π ≈ 20·3,14 ≈62.8 см^2
1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B.
Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм.
По свойству диагоналей параллелограма
AK²+BC² = 2*(AC²+AB²)
AK²+(√136)²=2*((√136)²+20²)
AK²=2*(136+400)-136
AK²=936
AK = 6√26
AA1 = AK/2 = (6√26)/2=3√26
AA1=BB1 = 3√26