ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
Найдём сначала внутренний угол, смежный с внешним углом, который нам известен. Обозначим его как букву С.
Следовательно, угол С = 180 - 108 = 72° ( сумма смежный углов = 180°)
Следовательно, сумма остальных углов треугольника = 180 - 72° = 108° (сумма углов треугольника = 180°)
Составим уравнение с условия, которое нам дано.
Пусть x - 1 часть, всего частей 12 ( 5 + 7), тогда угол А = 5x, угол B = 7x. Составим уравнение:
5x + 7x = 108
12x = 108
x = 9.
Следовательно, угол A = 45°,
угол B = 63°.
ответ: 45° ; 63°.