1. Теорема 1 (первый признак параллельности) Если при пересечении двух прямых третьей накрест лежащие(внутренние или внешние) углы равны, то такие прямые параллельны.
Доказательство:
Дано: прямые AB, CD и MN; угол 1= угол 2 . Требуется доказать: AB||CD.
Возьмем точку O — середину MN и проведем OK перпендикулярно CD. Докажем, что OK перпендикулярно AB. Треугольник OKN= треугольник OLM (по стороне и двум прилежащим углам). В них угол OLM= углу OKN. Но угол OKN = 180 градусов. Следовательно, KL перпендикулярно AB: AB||CD. Если будет дано, что равны внешние накрест лежащие углы, то обязательно будут равны и внутренние накрест лежащие углы.
2. Поскольку сумма всех углов треугольника равна 180 градусам, то 180 - 110 = 70 70 / 2 = 35 ответ: углы треугольника 35 и 35.
Пусть внешний угол будет смежен с верхним углом треугольника. По свойству внешнего угла (внешний угол равен сумме двух углов несмежных с ним). Т.к треугольник равнобедренный, то оставшиеся углы при основании равны, значит они равны, как 110/2 = 55 градусов - два угла при основании. Верхний угол тогда равен, 180-110=70 градусов.
Есть второе решение. Пусть внешний угол смежен с углом при основании, тогда 180-110=70 градусов - угол при основании. Соответственно второй угол - тоже равен 70 (который при основании). А третий тогда равен, как 180-(70+70)=180-140=40 градусов.
Объяснение:
Діагональ основи за теоремою Піфагора:
d=√a²+b²=√2²+4²=√4+16=√20 =2√5 см
Діагональ прямокутного паралелепіпеда за теоремою Піфагора:
D=√h²+d²=√5²+(2√5)²=√25+20=√45=3√5 см