Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Чтобы выучить зачёт,естественно нужно открыть учебник,там будут правила,выписать их(чтобы было легче),либо теоремы,формулы,смотря какой зачёт.А ещё смотря на какую тему,может вам дали весь учебник какого-то класс?Это будет намного сложнее,ведь в 8 и тем более в 9 давольно много правил,разных тем.Ну а чтобы вызубрить,естественно нужно потратить часа 2,все зависит от человека,не ленится и выучить все,что было задано.Не знаю зачем ты задал такой аопрос,больше чем уверена,что ты знал ответ,ведь магическим образом выучить ты не сможешь,таких методов нет,действуй,желаю удачи ))
ответ: х=69
Объяснение: если уравнение выглядит так: √(х-5)²=8², то решение такое:
√(х-5)²=8²
х-5=64
х=64+5
х=69;. х=69
Если уравнение выглядит так:
√(х-5)²=8, тогда:
х-5=8
х=8+5
х=13