Катет ВС = 12 см ; ∠В = 45°
Объяснение:
По теореме Пифагора АВ² = АС² + ВС². Из этого
ВС = √(АВ² - ВС²) = √((12√2)² - 12²) = √(288 - 144) = √144 = 12 см
Так как АС = ВС = 12 см , то треугольник АВС равнобедренный. Из этого ∠В = ∠А = 90° : 2 = 45°
Значит ∠В = 180° - (∠А + ∠С) = 180° - (45° + 90°) = 180° - 135° = 45°.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны.
ЧТД
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Объяснение:
<В=45°
ВС=12 см
Объяснение:
Найдем катетер по теореме Пифагора
АВ²=АС²+ВС²
(12√2) ²=12²+ВС²
ВС²=144*2-144=144*(2-1) =144, ВС=√144=12 см, тогда треугольник АВС не только прямоугольный, но и равноберенный АС=ВС, а значит <А=<В=(180°-90°) /2=90°/2=45°