Бічне ребро похилого паралелепіпеда ABCDA1B1C1D1 дорів- нює 6 см, а площа бічної поверхні — 312 см2. Відстань між ребрами AA1 і BB1 дорівнює 5 см, а між ребрами BB1 і DD1 — 19 см. Знайдіть двогранні кути паралелепіпеда при ребрах AA1 і BB1.
Если угол в параллелограмме 30° то его высота равна половине боковой стороны 12:2=6 см Площадь равна 20*6=120 см² 2) По т Пифагора найдем другую сторону прямоугольника √(15²-9²)=√(225-81)=√144=12 см Периметр равен (9+12)*2=42 см 3) высота трапеции равна одной из боковых сторон и равна 8 см сумма оснований трапеции равна удвоенной площади поделенной на высоту 2*120:8=30 см пусть одна сторона а тогда другая а+6 Отсюда а+а+6=30 см 2а=24 а=12 см Отсюда большое основание 12+6=18 см малое основание 12. Если начертить такую трапецию то ее можно разбить на прямоугольник со основанием 12 см и высотой 8 см и прямоугольный треугольник с катетами 6 см и 8 см. По т Пифагора можно найти гипотенузу с=√(6²+8²)=√(36+64)=√100=10- она и является 4 стороной трапеции ответ 18 и 12- основания трапеции; 8 и 10 см -боковые стороны
ABCD - равнобедренная трапеция, угол A = углу D = 30 градусов, BH и CK - высоты, AB = CD = 30 (см). AD || BC, BC = 14 (см), AD = 50 (см).
Найти: AC.
Решение:
1.Проведём высоты BH и CK, следовательно найдём AH
AH = (AD-BC)/2 = (50 - 14) /2 = 36/2=18 (см).
2. С прямоугольного треугольника ABH (угол AHB = 90градусов):
AH = 18 (см), AB = 30 (см), угол А =30градусов.
Определяем высоту BH.
За т. Пифагора
AB² = AH² + BH²
BH² = AB² - AH²
BH= \sqrt{AB^2-AH^2} = \sqrt{30^2-18^2} = \sqrt{900-324} = \sqrt{576} =24
3. Определяем Диагональ АС.
С прямоугольного треугольника ACK (угол AKC = 90градусов)
За т. Пифагора
AC^2=CK^2+AK^2 \\ AK=BC+AH=14+18=32 \\ AC= \sqrt{CK^2+Ak^2} = \sqrt{24^2+32^2} = \sqrt{576+1024} = \sqrt{1600} =40
ответ: AC = 40 (см).