В равнобедренном тр-ке боковые стороны равны. Биссектриса в равнобедренном тр-ке является его высотой и медианой. Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка.. Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х) Х^2 = 17^2 - 15^2 X^2 = 289 - 225 = 64 X = 8 Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2) Искомый периметр тр-ка = 17 +17+ 16= 50 (см)
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
по теореме Пифагора найдем радиус под корнем 5^2-4^2=под корнем 9=3
Sпов=πr^2+πrl=π*3^2+π*3*5=24