Объяснение:1. Если один из углов прямоугольного треугольника равен 20°, то чему равен другой острый угол? Решение: 90° - 20°=70°, ответ: 70°
2. Градусная мера угла при вершине равнобедренного треугольника равна 80°. Чему равны градусные меры углов при
основании? Решение: (180°-80°):2=50° ответ : 50° и 50°
3.Один из углов, образованных при пересечении двух прямых, равен 49°. Найдите меры остальных углов. ∠1=∠3=49°∠2=∠4=180°-49°=131° ответ: 49°, 131°, 131°
4. Если боковая сторона равнобедренного треугольника равна 14 см, а основание - 1 см, то чему равен периметр треугольника? Решение: Р= 14+14+1=29 см ответ: 29 см
5.Найдите смежные углы, если один из них на 50° больше другого. Решение: х+(х+50)=180 ⇒ 2х =130 ⇒ х=130:2=65° ⇒∠1=65°, ∠2=180°-65°= 115° ответ: 65° и 115°
6. В равных треугольниках ABC и КМР АВ = 8 см, ВС = 15см. Периметр треугольника АВС равен 31 см. Найдите длину стороны КР. Решение: по условию КР= АС = 31-8-15= 8 см
1)Геометрическое преобразование плоскости — взаимно-однозначное отображение этой плоскости на себя. Наиболее важными геометрическими преобразованиями являются движения, т. е. преобразования, сохраняющие расстояние.
2)
Преобразование плоскости (или пространства), при котором сохраняется отношение расстояний, называется преобразованием подобия или просто подобием. Другими словами, при преобразовании подобия F для любых двух точек имеет место соотношение F(A)F(B) = kAB, где k – некоторое число, называемое коэффициентом подобия.
3)
Две фигуры называют гомотетичными, если одна из них переходит в другую при некоторой гомотетии. Из определения следует, что при $k=-1$ гомотетия является центральной симметрией с центром в точке $O$, а при $k=1$ — тождественным преобразованием
4)Гомоте́тия (от др.-греч. ὁμός «одинаковый» + θετος «расположенный») — преобразование плоскости (или пространства), заданное центром O и коэффициентом {\displaystyle k\neq 0}k\neq 0, переводящее каждую точку {\displaystyle X}X в точку {\displaystyle X'}X' такую, что {\displaystyle {\overrightarrow {OX'}}=k{\overrightarrow {OX}}}\overrightarrow {OX'}=k\overrightarrow {OX}. При этом центр остаётся на месте. Гомотетию с центром O и коэффициентом k часто обозначают через Н^k O