Деталь имеет форму изображенного на рисунке многогранника (все двугранные углы прямые). Числа на рисунке обозначают длины рёбер в сантиметрах. Найдите площаль поверхности этой детали. ответ дайте в квадратных сантиметрах.
Вариант 1. Уровень А. 1. в) Одну. 2. а) MN = KN 3. в) В - середина АD 4. б) N∈MK 5. б) ∠АОМ = ∠РОА 6. а) 48° и 132° 7. в) (рисунок во вложении) 8. б) прямой 9. б) Если биссектрисы двух углов перпендикулярны, то эти углы смежные.
Уровень В. 1. 180° - 113° = 67° 2. 12,3 - 5,7 = 6,6 см 3. 6,1 : 2 = 3,05 см 4. (140° - 20°) : 2 = 60° 5. 24 : 2 = 12 см 6. 180° - (56° : 2) = 180° - 28° = 152°
Вариант 2. Уровень А. 1. в) Одну 2. в) 2 АВ = МВ 3. в) B – середина АD 4. а) С∈АВ 5. в) ∠ АОМ = ∠ КOМ 6. в) 93° и 77° 7. в) (рисунок во вложении) 8. а) острый 9. б) Если углы прямые, то они смежные
Уровень В. 1. 180° - 132° = 48° 2. 5,2 - 3,6 = 1,6 см 3. 2,8 · 2 = 5,6 см 4. 120° : 6 = 20° 5. 12 : 2 = 6 см 6. (180° - 124°) · 2 = 56° · 2 = 112°
Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно