1. Полупериметр треугольника
р = (18 + 2*15) / 2 = 24 см
Площадь по формуле Герона
S = Корень (24*(24-18)*(24-15)*(24-15)) = 108 кв.см
Площадь через радиус вписанной окружности
S = p*r, где
r = S/p = 108/24 = 4,5 см
Площадь через радиус описанной окружности
S = a*b*c / 4*R, где
R = a*b*c / 4*S = 18*15*15 / 4*108 = 9,375 см
2. Рисуем трапецию АВСД. Так как в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон
АВ + СД = АД + ВС = 100 / 2 = 50 см
АВ = СД = 50 / 2 = 25 см
Из точки С опускаем высоту СК на основание АД
СК = 2*радиус вписанной окружности = 2*12 = 24 см
Площадь трапеции
S = СК * (АД + ВС) / 2 = 24 * 50 / 2 = 600 кв.см
КД = Корень(СД^2 - СК^2) = Корень(25^2 - 24^2) = 7 см
ВС = ((АД + ВС) - 2*КД) / 2 = (50 - 2*7) / 2 = 18 см
АД = 50 - ВС = 50 - 18 = 32 см
Диагонали ромба являются биссектрисами его углов. Дано: ABCD - ромб - Доказать: AC ^ BD, BD и CA - биссектрисы углов ромба.
Обозначим вершины ромба буквами латинского алфавита A, B, C и D для удобства обсуждения. Точку пересечения диагоналей традиционно обозначают буквой O. Длину ребра ромба обозначим буквой a. Величину угла BCD, который равен углу BAD, обозначим α.
2Найдем величину короткой диагонали. Так как диагонали пересекаются под прямым углом, то треугольник COD является прямоугольным. Половина короткой диагонали OD является катетом этого треугольника и может быть найдена через гипотенузу CD, а также угол OCD.
Диагонали ромба являются также биссектрисами его углов, поэтому угол OCD равен α/2.
3Таким образом, OD = BD/2 = CD*sin(α/2). То есть, короткая диагональ BD = 2a*sin(α/2).
Аналогичным образом, из того, что треугольник COD прямоугольный, можем выразить величину OC (а это половина длинной диагонали).
OC = AC/2 = CD*cos(α/2)
Величина длинной диагонали выражается следующим образом: AC =2a*cos(α/2)