Пусть х - один из катетов, тогда y - второй катет. Используя теорему Пифагора, составим систему уравнений:
13=√(х²+у²)
13+2=√((х+4)²+у²)
13=√(х²+у²)
15=√((х+4)²+у²)
Возуведем обе части в квадрат, чтобы избавиться от корня:
169=х²+у²
225=(х+4)²+у²
169=х²+у²
225=х²+8х+16+у²
Из первого уравнения выразим х:
169=х²+у²
х²=169-у²
х=√(169-у²)
Теперь подставим выражение √(169-у²) вместо х во второе уравнение:
225=х²+8х+16+у²
225=(√(169-у²))²+8(√(169-у²))+16+у²
225=169-у²+8√(169-у²)+16+у²
225-169-16=8√(169-у²)
40=8√(169-у²)
40:8=√(169-у²)
5=√(169-у²) - возведем обе части в квадрат.
25=169-у²
у²=169-25
у²=144
у=√144
у=12 см - первый катет.
Если у=12, то х=√(169-у²)=√(169-12²)=√(169-144)=√25=5 см - второй катет.
ответ: катеты равны 5 и 12 см.
[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]