Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Объяснение:
так думаю.
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
нравится8