Смотрите вложенный файл. Там чертеж. Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!) Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а. Образуется прямоугольный треугольник. Из него получаем: а²+а²=2а² Тогда сторона вписанного квадрата равна а√2 Периметр вписанного квадрата равен p=4а√2 Периметр описанного квадрата равен P=8а p/P=(4а√2)/(8а)=√2/2(это отношение периметров) Площадь вписанного квадрата s=(a√2)²=2a² Площадь описанного квадрата S=S₂=(2a)²=4a² Отношение площадей: s/S=(2a²)/(4a²)=1/2
ответ:1 задание - по 2м сторонам и углу между ними (1 признак)
2 задание - по 3м сторонам (3 признак)
3 задание - по стороне и 2м прилежащем углам (2 признак)
4 задание - нет (т.к. Они равны по по 2 признаку, BD- общая)
5 задание - по 2м сторонам и углу между ними (1 признак)
Задачи:
1)ОК=ОМ(усл)
2)Угол КОР = угол МОР (т.к бисс.)
3)ОР - Общ.
Из этого всего => треугольники равны, по 1 признаку.
Уг М = уг Т(Т.к. уг Р=уг К, вертикальные углы при точке О)
1)Уг М= уг Т
2)Вертикальные при т. О
3)МО=ОТ(усл)
Из всего этого => треугольники равны по 2 признаку
Объяснение: