Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите V и
S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.
Объяснение:
Если конус вписан в цилиндр , то основания совпадают, поэтому
r( конуса)=3.
Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.
V(конуса )=1/3*S(осн)*h , V(пирам)=1/3*(π*3²)*4=12π .
S(бок.конуса )= π * r* L . Найдем L из прямоугольного треугольника по т. Пифагора L= √( 3³+4²)=√25=5.
S(бок.конуса )=π*3*5=15π.
ответ : V(пирам)/π=12 , S(бок.конуса )/π=15.
Дана задача має 2 розв'язки:
1 варіант - довжина бічної сторони складає 3 частини, основа - 5 частини.
Р рівнобедр.тр. = 2а + в
Р1 = 2 × 3х + 5х = 143
6х + 5х = 143
11х = 143
х = 13 - довжина 1-єї частини
3х = 3×13 = 39 (см) - довжина бічної сторони,
5х = 5×13 = 65 (см) - довжина основи.
2 варіант - навпаки, бічна сторона - 5, основа - 3 частини, отже:
Р рівнобедр.тр. = 2а + в
Р1 = 2 × 5х + 3х = 143
10х + 3х = 143
13х = 143
х = 11 - довжина 1-єї частини
5х = 5×11= 55 (см) - довжина бічної сторони,
3х = 3×11 = 33 (см) - довжина основи.