Рассмотрим треугольник АВС. АВС – прямоугольный треугольник, угол С = 90 градусов – прямой, угол СВА (В) = 30 градусов, АВ =12 см – гипотенуза. В треугольнике АВС найдем, используя теорему Пифагора, катет ВС. Для этого сначала нужно найти катет АС. Катет АС равен АВ/2, так как АС лежит против угла в 30 градусов, а из свойств прямоугольного треугольника известно, что против угла в 30 градусов лежит катет, который равен половине гипотенузы: АС = АВ/2 = 12/2 = 6 (см). Найдем катет ВС: ВС = √( АВ^2 – АС^2) = √(12^2 – 6^2) = √(144-36) = √108 (см). 2. Рассмотрим треугольник BCD. BCD - прямоугольный треугольник (CD – высота, поэтому образует с АВ прямой угол). В прямоугольном треугольнике BCD угол BDC = 90 градусов, угол DBC = 30 градусов по условию, ВС = √108 см – гипотенуза, так как лежит против прямого угла BDC. Нам нужно найти катет BD. Для начала найдем катет DC. DC лежит против угла в 30 градусов, поэтому равен половине гипотенузы: DC = ВС/2 = √108/2 (см). Теперь по теореме Пифагора найдем катет BD: BD = √(BC^2 – DC^2) = √((√108)^2 – (√108/2)^2) = √(108 – 108/4) = √(108 – 27) = √81 = 9 (см). ответ: BD = 9 см.
Я тебе напишу общий план решения прости что не все но главное понять идею а там все просто будет. для начала конечно же рисунок получится примерно так как на картинке зеленым цветом я провел радиусы по условию они равны. Из рисунка видно что стороны треугольников равенство которых необходимо доказать являются основаниями равнобедренных треугольников у которых боковые стороны равны. также видно что и углы при вершине этих треугольников равны. следовательно все эти равнобедренные треугольники равны между собой из чего следует что все стороны рассматриваемых нами треугольников равны. А это в свою очередь означает что два интересующих нас треугольника (как выяснилось они правильные) равны. Что и требовалось доказать.
1. Бабочка
2. Баранка
3. Рука
4. Акула
5. Платок
6. Автор ( буква О внутри Т А+ в Т о+ Р)
7. Лимон
8. Столица
9. Аист
10. Ученик
11. Подарок
12. Королева