1 способ. можно воспользоваться правилом, что синус угла от 0° до 90° возрастает, синус угла от 90° до 180° убывает.
а) sin 150°; sin 135°; sin 90° ; sin 60°
в) использовать формулу , чтобы свести все углы в первую четверть.
sin (180° - α) = sin α
sin 60° = sin (180° - 60°) = sin 120°
sin 90° = sin (180° - 90°) = sin 90°
sin 135° = sin (180° - 135°) = sin 45°
sin 150° = sin (180° - 150°) = sin 30°
ответ: sin 150°; sin 135°; sin 90° ; sin 60°
по таблице косинусов углов
cos(0°)=cos(0)= 1
cos(60°)=cos(π/3)=1/2
cos(90°)=cos(π/2)= 0
cos(135°)=cos3 x π/4=,7071)
cos(150°)=cos5 x π/6=(-0,8660)
ответ cos(150°). cos(135°). cos(90°). cos(60°)
Сечение - правильный шестиугольник.
Объяснение:
Плоскости пересекаются по прямым линиям. Две параллельные плоскости пересекаются третьей по параллельным прямым.
Нам даны три точки секущей плоскости, пересекающей куб: E, F и G, расположенные на ребрах АВ, AD и DD1 соответственно.
Прямая EF, принадлежащая секущей плоскости и грани АВСD куба пересекает грань куба DD1C1C в точке Q, а грань куба AA1B1B в точке R.
Проведя прямую QG до пересечения с ребром D1C1, получим точку сечения Н.
Теперь можно провести НI параллельно EF и IK параллельно GF => получим все точки сечения.
Но можно построить недостающие точки P и S (построение понятно из рисунка) и провести прямые SI (через Н) и РК (через Е). Получим то же самое сечение, которое в силу симметричности точек является правильным шестиугольником.