Углы каждой пары равны между собой (каквертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.
Поэтому ∠1=∠А+∠С, ∠2=∠А+∠В, ∠3=∠В+∠С.
Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна
∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).
Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.
Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.
Дано: D∉(ABC); AC=BD; AL=LB (L∈AB); BK=KC (K∈BC); CM=MD (M∈CD); DN=NA (N∈DA).
Доказать: MNLK - ромб.
AC║MN и AC=2MN т.к. MN - средняя линия ΔACD.
AC║LK и AC=2LK т.к. LK - средняя линия ΔACB.
MN║AC║LK ⇒ MN║LK; 2MN=AC=2LK ⇒ MN=LK
MN║LK ⇒ MN, LK ⊂ (MNL), в этой плоскости рассмотрим четырёхугольник MNKL: у него две противоположные стороны параллельны и равны (MN, LK),поэтому это точно параллелограмм у ромба помимо этого ещё все стороны равны, значит чтобы доказать, что MNLK - ромб осталось только доказать, что MK=NM т.к. если это выполняется, то NL=MK - как противоположные стороны параллелограмма, а значит MN=NL=LK=KM.
BD=2MK т.к. MK - средняя линия ΔBDC.
BD=AC - по условию.
2MK=BD=AC=2MN ⇒ MK=MN. Доказали, значит MNLK это параллелограмм у которого все стороны равны, то есть это ромб.