Поскольку отрезок DE (параллельный плоскости альфа) лежит в плоскости треугольника АВС, а плоскость треугольника АВС пересекает плоскость альфа по прямой ВС, значит, линия пересечения плоскостей (линия ВС) параллельна DE. Т.е. DE и ВС параллельны. Отсюда следует, что треугольники АВС и АДЕ – подобны, т.к. отрезок, параллельный стороне треугольника, отсекает треугольник подобный данному. АВ = АД + ДВ = 9 + 2 = 11 условных единиц. Из подобия указанных треугольников можно записать ВС/ДЕ = АВ/АД. Отсюда ВС= АВ*ДЕ/АД = 11*7/9 =77/9 см.
Объяснение:
треугольник СDЕ,
угол С = 30 градусов,
угол D/угол Е = 2/3.
Найти градусные меры угла D и угла Е - ?
Решение:
Пусть одна часть х градусов, тогда градусная мера угла D равна 2 * х градусов,а градусная мера угла Е равна 3 * х градусов. Нам известно, что сумма градусных мер любого треугольника равна 180 градусов и градусная мера угла С = 30 градусов. Составляем уравнение:
30 + 2 * х + 3 * х = 180;
х * ( 2 + 3) = 180 - 30;
х * 5 = 180 - 30;
х * 5 = 150;
х = 150 : 5;
х = 30 градусов - градусная мера одной части;
2 * 30 = 60 градусов - градусная мера угла D;
3 * 30 = 90 градусов - градусная мера угла Е.
ответ: 60 градусов; 90 градусов.